Full Solution

by Jung-Lynn Jonathan Yang

Question

Magnesium metal (a component of alloys used in aircraft and a reducing agent used in the production of uranium, titanium, and other active metals) is isolated from sea water by the following sequence of reactions:

$$
\begin{aligned}
& \mathrm{Mg}^{2+}(a q)+\mathrm{Ca}(\mathrm{OH})_{2}(a q) \longrightarrow \mathrm{Mg}(\mathrm{OH})_{2}(s)+\mathrm{Ca}^{2+}(a q) \\
& \mathrm{Mg}(\mathrm{OH})_{2}(s)+2 \mathrm{HCl}(a q) \longrightarrow \mathrm{MgCl}_{2}(s)+2 \mathrm{H}_{2} \mathrm{O}(/) \\
& \mathrm{MgCl}_{2}(I) \xrightarrow{\text { electrolysis }} \mathrm{Mg}(s)+\mathrm{Cl}_{2}(g)
\end{aligned}
$$

Sea water has a density of $1.026 \mathrm{~g} / \mathrm{cm}^{3}$ and contains 1272 parts per million of magnesium as $\mathrm{Mg}^{2+}(\mathrm{aq})$ by mass. What mass, in kilograms, of $\mathrm{Ca}(\mathrm{OH})_{2}$ is required to precipitate 99.9% of the magnesium in $1.00 \times 10^{3} \mathrm{~L}$ of sea water?

Question source: OpenStax Chemistry 2e

Solution

The concentration in parts per million (ppm) by mass means

$$
\mathrm{ppm} \text { by mass }=\frac{\text { mass of solute }}{10^{6} \text { mass of solution }}
$$

The mass of sea water is

$$
m_{\text {sea water }}=\left(1.00 \times 10^{3} \mathrm{~L}\right)\left(\frac{\mathrm{cm}^{3}}{10^{-3} \mathrm{~L}}\right)\left(\frac{1.026 \mathrm{~g}}{\mathrm{~cm}^{3}}\right)=1.03 \times 10^{6} \mathrm{~g} \text { sea water }
$$

Note that $\mathrm{cm}^{3}=\mathrm{mL}=10^{-3} \mathrm{~L}$.
The concentration of Mg^{2+} in sea water is

	$\mathrm{Mg}(\mathrm{OH})_{2}(s)$	\rightleftharpoons	$\mathrm{Mg}^{2+}(a q)$	$+2 \mathrm{OH}^{-}(a q)$
Initial	-	0.0537	$?$	
Change	-	x	$-2 x$	
Equilibrium	-	$0.0537-x$	$?-2 x$	

The equilibrium concentration of Mg^{2+} is the leftover Mg^{2+} in solution. Keep extra digits in the calculator for intermediate calculations because the difference between the initial and equilibrium concentration of Mg^{2+} is very small

$$
\begin{aligned}
{\left[\mathrm{Mg}^{2+}\right]=0.0537 \mathrm{M}-x } & =(0.0537 \mathrm{M})(100 \%-99.9 \%) \\
x & =0.0536463 \mathrm{M}
\end{aligned}
$$

Use the $K_{\text {sp }}$ expression to calculate the concentration of Ca^{2+} and equate $\left[\mathrm{OH}^{-}\right]$to the equilibrium concentration ? $-2 x$ from the ICE table

$$
\begin{aligned}
K_{\mathrm{sp}} & =\left[\mathrm{Mg}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{2} \\
{\left[\mathrm{OH}^{-}\right]^{2} } & =K_{\mathrm{sp}} /\left[\mathrm{Mg}^{2+}\right] \\
{\left[\mathrm{OH}^{-}\right] } & =\sqrt{K_{\mathrm{sp}} /\left[\mathrm{Mg}^{2+}\right]} \\
& =\sqrt{\left(8.9 \times 10^{-12}\right) /(0.0536463)} \\
& =4.07 \times 10^{-4} \mathrm{M} \\
?-2 x & =4.07 \times 10^{-4} \mathrm{M} \\
? & =4.07 \times 10^{-4} \mathrm{M}+2 x \\
& =4.07 \times 10^{-4} \mathrm{M}+2(0.0536463 \mathrm{M}) \\
& =0.108 \mathrm{M} \mathrm{OH}^{-} \text {added }
\end{aligned}
$$

Each mole of $\mathrm{Ca}(\mathrm{OH})_{2}$ has 2 moles of OH^{-}

$$
\begin{gathered}
\mathrm{Ca}(\mathrm{OH})_{2}(s) \rightleftharpoons \mathrm{Ca}^{2+}(a q)+2 \mathrm{OH}^{-}(a q) \\
m_{\mathrm{Ca}(\mathrm{OH})_{2}}=\left(0.108 \mathrm{M} \mathrm{OH}^{-}\right)\left(1.00 \times 10^{3} \mathrm{~L}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}{2 \mathrm{~mol} \mathrm{OH}^{-}}\right)\left(\frac{74.10 \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}}{\mathrm{~mol} \mathrm{Ca}(\mathrm{OH})_{2}}\right) \\
=3.99 \times 10^{3} \mathrm{~g} \mathrm{Ca}(\mathrm{OH})_{2}=3.99{\mathrm{~kg} \mathrm{Ca}(\mathrm{OH})_{2}}^{2}
\end{gathered}
$$

The difficulty with using $\mathrm{Ca}(\mathrm{OH})_{2}$ to precipitate Mg^{2+} is that $\mathrm{Ca}(\mathrm{OH})_{2}$ has limited solubility in water. The amount of added $\left[\mathrm{Ca}^{2+}\right]$ and $\left[\mathrm{OH}^{-}\right]$must not exceed the $K_{\text {sp }}$ of $\mathrm{Ca}(\mathrm{OH})_{2}$ or else $\mathrm{Ca}(\mathrm{OH})_{2}$ will not dissolve.

$$
\begin{aligned}
& n_{\mathrm{Ca}^{2+}}=\left(53.8 \mathrm{M} \mathrm{OH}^{-}\right)\left(1.00 \times 10^{3} \mathrm{~L}\right)\left(\frac{1 \mathrm{~mol} \mathrm{Ca}^{2+}}{2 \mathrm{~mol} \mathrm{OH}^{-}}\right)=53.8 \mathrm{~mol} \mathrm{Ca}^{2+} \\
& {\left[\mathrm{Ca}^{2+}\right]=108 \mathrm{~mol} \mathrm{Ca}}
\end{aligned}
$$

$$
\begin{aligned}
Q_{\text {sp }} & =\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{OH}^{-}\right] \\
& =(0.0538)\left(4.07 \times 10^{-4}\right)^{2} \\
& =8.91 \times 10^{9}<K_{\text {sp }}=1.3 \times 10^{-6}
\end{aligned}
$$

$\mathrm{Q}_{\mathrm{sp}}<\mathrm{K}_{\mathrm{sp}}$, the added $\mathrm{Ca}(\mathrm{OH})_{2}$ will not precipitate.

