Full Solution

by Jung-Lynn Jonathan Yang

Question

Magnesium metal (a component of alloys used in aircraft and a reducing agent used in the production of uranium, titanium, and other active metals) is isolated from sea water by the following sequence of reactions:

$$\begin{split} \mathsf{Mg}^{2+}(aq) &+ \mathsf{Ca}(\mathsf{OH})_2(aq) \longrightarrow \mathsf{Mg}(\mathsf{OH})_2(s) + \mathsf{Ca}^{2+}(aq) \\ \mathsf{Mg}(\mathsf{OH})_2(s) &+ 2\mathsf{HCI}(aq) \longrightarrow \mathsf{Mg}\mathsf{Cl}_2(s) + 2\mathsf{H}_2\mathsf{O}(l) \\ \mathsf{Mg}\mathsf{Cl}_2(l) \xrightarrow{\mathsf{electrolysis}} \mathsf{Mg}(s) + \mathsf{Cl}_2(g) \end{split}$$

Sea water has a density of 1.026 g/cm³ and contains 1272 parts per million of magnesium as $Mg^{2+}(aq)$ by mass. What mass, in kilograms, of Ca(OH)₂ is required to precipitate 99.9% of the magnesium in 1.00 × 10³ L of sea water?

Question source: OpenStax Chemistry 2e

Solution

The concentration in parts per million (ppm) by mass means

ppm by mass =
$$\frac{\text{mass of solute}}{10^6 \text{ mass of solution}}$$

The mass of sea water is

$$m_{\text{sea water}} = (1.00 \times 10^3 \text{ L}) \left(\frac{\text{cm}^3}{10^{-3} \text{ L}}\right) \left(\frac{1.026 \text{ g}}{\text{cm}^3}\right) = 1.03 \times 10^6 \text{ g sea water}$$

Note that $cm^3 = mL = 10^{-3} L$.

The concentration of Mg^{2+} in sea water is

	$Mg(OH)_2(s)$	$\stackrel{\frown}{\leftarrow}$	$Mg^{2+}(aq)$	+	2 OH ⁻ (<i>aq</i>)
Initial	_		0.0537		?
Change	-		X		-2x
Equilibrium	-		0.0537 <i>- x</i>		? - 2x

The equilibrium concentration of Mg^{2+} is the leftover Mg^{2+} in solution. Keep extra digits in the calculator for intermediate calculations because the difference between the initial and equilibrium concentration of Mg^{2+} is very small

$$[Mg^{2+}] = 0.0537 \text{ M} - x = (0.0537 \text{ M})(100\% - 99.9\%)$$

 $x = 0.0536463 \text{ M}$

Use the K_{sp} expression to calculate the concentration of Ca²⁺ and equate [OH⁻] to the equilibrium concentration ? – 2x from the ICE table

$$\begin{aligned} \mathcal{K}_{sp} &= [Mg^{2+}][OH^{-}]^{2} \\ [OH^{-}]^{2} &= \mathcal{K}_{sp}/[Mg^{2+}] \\ [OH^{-}] &= \sqrt{\mathcal{K}_{sp}/[Mg^{2+}]} \\ &= \sqrt{(8.9 \times 10^{-12})/(0.0536463)} \\ &= 4.07 \times 10^{-4} \text{ M} \\ ? - 2x &= 4.07 \times 10^{-4} \text{ M} \\ ? &= 4.07 \times 10^{-4} \text{ M} + 2x \\ &= 4.07 \times 10^{-4} \text{ M} + 2(0.0536463 \text{ M}) \\ &= 0.108 \text{ M OH}^{-} \text{ added} \end{aligned}$$

Each mole of $Ca(OH)_2$ has 2 moles of OH^-

$$Ca(OH)_{2}(s) \rightleftharpoons Ca^{2+}(aq) + 2 OH^{-}(aq)$$

$$m_{Ca(OH)_{2}} = (0.108 \text{ M OH}^{-})(1.00 \times 10^{3} \text{ L}) \left(\frac{1 \text{ mol } Ca(OH)_{2}}{2 \text{ mol } OH^{-}}\right) \left(\frac{74.10 \text{ g } Ca(OH)_{2}}{\text{ mol } Ca(OH)_{2}}\right)$$

$$= 3.99 \times 10^{3} \text{ g } Ca(OH)_{2} = \boxed{3.99 \text{ kg } Ca(OH)_{2}}$$

The difficulty with using Ca(OH)₂ to precipitate Mg²⁺ is that Ca(OH)₂ has limited solubility in water. The amount of added [Ca²⁺] and [OH⁻] must not exceed the K_{sp} of Ca(OH)₂ or else Ca(OH)₂ will not dissolve.

$$n_{Ca^{2+}} = (53.8 \text{ M OH}^{-})(1.00 \times 10^{3} \text{ L}) \left(\frac{1 \text{ mol } Ca^{2+}}{2 \text{ mol } OH^{-}}\right) = 53.8 \text{ mol } Ca^{2+}$$

[Ca²⁺] = 108 mol Ca²⁺/1.00 × 10³ L = 0.0538 M

$$Q_{sp} = [Ca^{2+}][OH^{-}]$$

= (0.0538)(4.07 × 10⁻⁴)²
= 8.91 × 10⁹ < K_{sp} = 1.3 × 10⁻⁶

 $\mathsf{Q}_{\mathsf{sp}} < \mathsf{K}_{\mathsf{sp}},$ the added $\mathsf{Ca}(\mathsf{OH})_2$ will not precipitate.