Formula Sheet and Data Tables

The exam will have the printed version of the formula sheet.

These data tables can be used on assignments but will not be provided on the exam.  Relevant data will be given in the exam questions.

 

Constants and conversion factors

[latex]\begin{align*} R &=62.36 \text{ L}\cdot\text{torr }\cdot\text{mol}^{-1}\cdot\text{K}^{-1} \\ &= 0.08206 \text{ L}\cdot\text{atm}\cdot\text{mol}^{-1}\cdot\text{K}^{-1} \\ &= 0.08314 \text{ L}\cdot\text{bar}\cdot\text{mol}^{-1}\cdot\text{K}^{-1} \\ &= 8.314 \text{ L}\cdot\text{kPa}\cdot\text{mol}^{-1}\cdot\text{K}^{-1} \\ &= 8.314 \text{ J}\cdot\text{mol}^{-1}\cdot\text{K}^{-1} \\ &= 8.314 \text{ kg}\cdot\text{m}^2\cdot\text{s}^{-2}\cdot\text{mol}^{-1}\cdot\text{K}^{-1} \end{align*}[/latex]

 

[latex]\begin{align*} F &= 96485 \text{ C} \cdot \text{mol}^{-1} \\ &= 96485 \text{ J} \cdot \text{mol}^{-1}\cdot \text{V}^{-1} \end{align*}[/latex]

 

[latex]1 \text{ atm }=101.325 \text{ kPa } = 760 \text{ torr} = \text{exactly } 760 \text{ mmHg}[/latex]

 

[latex]T(K) = T(^\circ \text{C})+273.15[/latex]


Unit 1 Gases

 

[latex]\begin{array}{ccc} PV=nRT &&& \dfrac{P_{\text{f}}V_{\text{f}}}{n_{\text{f}}T_{\text{f}}} = \dfrac{P_{\text{i}}V_{\text{i}}}{n_{\text{i}}T_{\text{i}}} &&&E_{\text{K, ave}}= (3/2)RT/N_{\text{A}} \\\\ u_{\text{rms}}= \sqrt{3RT/M} &&&M=\frac{mRT}{PV} &&&d=\frac{PM}{RT} \\\end{array}[/latex]

[latex]\begin{array}{cc} \frac{\text{rate (diffusion or effusion) of gas A}}{\text{rate (diffusion or effusion) of gas B}} = \sqrt{\frac{\text{molar mass of gas B}}{\text{molar mass of gas A}}} \\\\ \frac{\text{rate (diffusion or effusion) of gas A}}{\text{rate (diffusion or effusion) of gas B}} = \sqrt{\frac{\text{density of gas B}}{\text{density of gas A}}}\end{array}[/latex]

[latex]\begin{array}{ll}P_{\text{tot}}= P_{\text{A}}+P_{\text{B}}+\dots &&& x_\text{A}= \frac{n_{\text{A}}}{n_{\text{tot}}}=\frac{P_{\text{A}}}{P_{\text{tot}}}=\frac{V_{\text{A}}}{V_{\text{tot}}}\end{array}[/latex]


Unit 2 Kinetics

 

For a reaction a A + b B ⟶ c C + d D,

[latex]\text{reaction rate }=k[\text{A}]^x[\text{B}]^y=-\frac{1}{a}\frac{\Delta[\text{A}]}{\Delta t}=-\frac{1}{b}\frac{\Delta[\text{B}]}{\Delta t}=\frac{1}{c}\frac{\Delta[\text{C}]}{\Delta t}=\frac{1}{d}\frac{\Delta[\text{D}]}{\Delta t}[/latex]

 

[latex]k=Ae^{\frac{-E_{\text{a}}}{RT}}[/latex] [latex]\ln k=\frac{-E_{\text{a}}}{R}\frac{1}{T}+\ln A[/latex] [latex]\ln\left(\frac{k_2}{k_1}\right) = \frac{−E_\text{a}}{R}\left(\frac{1}{T_2}−\frac{1}{T_1}\right)[/latex]

For first-order and pseudo first-order reactions,

[latex]\ln \frac{[\text{A}]}{[\text{A}]_0}=-kt[/latex] [latex]\ln [\text{A}]=-kt+\ln [\text{A}]_0[/latex] [latex]t_{1/2}=\frac{0.693}{k}[/latex]


Unit 4 Acid-Base and Solubility Equilibria

 

Acid ionization, HA(aq) + H2O(l) ⇌ H3O+(aq) + A(aq)

[latex]K_{\text{a}}=\frac{[\text{H}_3\text{O}^+][\text{A}^−]}{[\text{HA}]}[/latex] [latex]\text{p}K_{\text{a}}=-\log K_{\text{a}}[/latex] [latex]\text{% ionization}=\frac{[\text{H}_3\text{O}^+]_{\text{eq}}}{[\text{HA}]_\text{initial}}×100\%[/latex]

 

Base ionization, B(aq) + H2O(l) ⇌ HB+(aq) + OH(aq)

[latex]K_{\text{b}}=\frac{[\text{HB}^+][\text{OH}^−]}{[\text{B}]}[/latex] [latex]\text{p}K_{\text{b}}=-\log K_{\text{b}}[/latex] [latex]\text{% ionization}=\frac{[\text{OH}^-]_{\text{eq}}}{[\text{B}]_\text{initial}}×100\%[/latex]

 

[latex]\text{pH}=-\log[\text{H}_3\text{O}^+][/latex]          [latex][\text{H}_3\text{O}^+]=10^{-\text{pH}}[/latex]          [latex]\text{pOH}=-\log[\text{OH}^-][/latex]          [latex][\text{OH}^-]=10^{-\text{pOH}}[/latex]

 

At 25 ºC,  [latex]K_{\text{w}} = 1.0\times10^{-14}[/latex] and [latex]\text{p}K_{\text{w}}=14.00[/latex]

\begin{array}{cc} K_{\text{w}}=1.0\times10^{-14} = [\text{H}_3\text{O}^+][\text{OH}^-] &&& K_{\text{w}}=1.0\times10^{-14}=K_{\text{a, conj acid}} \times K_{\text{b, conj base}} \\\\
\text{p}K_{\text{w}}=14.00=\text{pH}+\text{pOH} &&& \text{p}K_{\text{w}} = 14.00 = \text{p}K_{\text{a, conj acid}}+\text{p}K_{\text{b, conj base}} \end{array}

 

[latex]\text{pH}=\text{p}K_{\text{a}}+\log\left(\frac{[\text{A}^-]}{[\text{HA}]}\right)[/latex]

 

Dissolution of a sparingly soluble ionic compound

MpXq(s) ⇌ p Mm+(aq) + q Xn(aq) [latex]K_{\text{sp}}=[\text{M}^{m+}]^p\;[\text{X}^{n-}]^q[/latex]


Unit 5 Thermodynamics

 

[latex]\begin{array}{ccc} \Delta U=q+w && q=mc\Delta T && w=-P\Delta V \end{array}[/latex]

At constant volume, [latex]\Delta U = q[/latex]At constant pressure, [latex]\Delta H = q[/latex]

[latex]\begin{array}{l} \Delta H^\circ = \sum{n} \times \Delta H^\circ_{\text{f}} (\text{products}) - \sum{n} \times \Delta H^\circ_{\text{f}}(\text{reactants}) \\\\ \Delta S^\circ = \sum{n} \times S^\circ (\text{products}) - \sum{n} \times  S^\circ(\text{reactants}) \\\\ \Delta G^\circ = \sum{n} \times \Delta G^\circ_{\text{f}} (\text{products}) - \sum{n} \times \Delta G^\circ_{\text{f}}(\text{reactants})  \end{array}[/latex]

[latex]\Delta G = \Delta H - T \Delta S \Rightarrow[/latex] at standard state, [latex]\Delta G^\circ = \Delta H^\circ - T \Delta S^\circ[/latex]

[latex]\Delta G_{\text{r}}=\Delta G^\circ_{\text{r}}+RT \ln Q[/latex][latex]\Delta G^\circ_{\text{r}}=-RT \ln K[/latex] [latex]K=e^{-\frac{\Delta G^\circ_{\text{r}}}{RT}}[/latex]


Unit 6 Electrochemistry

 

[latex]E^\circ_{\text{cell}}=E^\circ_{\text{cathode}}-E^\circ_{\text{anode}}[/latex]

[latex]E_{\text{cell}}=E^\circ_{\text{cell}}-\frac{RT}{nF}\ln Q \Rightarrow[/latex]  at 298.15 K, [latex]E_{\text{cell}}=E^\circ_{\text{cell}}-\frac{0.0592 \text{ V}}{n}\log Q[/latex]

[latex]E^\circ_{\text{cell}}=\frac{RT}{nF}\ln K \Rightarrow[/latex] at 298.15 K, [latex]E^\circ_{\text{cell}}=\frac{0.0592 \text{ V}}{n}\log K[/latex]

[latex]\Delta G=-nFE_{\text{cell}} \Rightarrow[/latex] at standard state, [latex]\Delta G^\circ=-nFE_{\text{cell}}^\circ[/latex]

License

Icon for the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

Principles of Chemistry Copyright © by 2016 is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License, except where otherwise noted.

Share This Book